
DESIGN AND IMPLEMENTATION OF PROPHESY AUTOMATIC
INSTRUMENTATION AND DATA ENTRY SYSTEM

Xingfu Wu Valerie Taylor
Department of Electrical and Computer Engineering, Northwestern University, Evanston IL 60208

Email: {wuxf, taylor}@ece.northwestern.edu

Rick Stevens
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

ABSTRACT

In this paper, we present the Prophesy Automatic
Instrumentation and Data Entry (PAIDE) system and
describe its design framework and implementation
supporting C, Fortran77 and Fortran90 programs on
diverse systems. We use NAS Conjugate Gradient (CG)
and Integer Sort (IS) benchmarks to analyze the PAIDE’s
instrumentation overheads for two granularities of
instrumentation with increasing number of processors and
problem size. The experimental results on the SGI
Origin2000 show that the instrumentation overhead for
CG benchmarks is less than 3.4%, while that for parallel
IS benchmarks is less than 1%. This is significant and it
indicates that the PAIDE system does not perturb the
performance data. The PAIDE system is able to capture
performance information on repeated events as sequential
events and is appropriate for parallel and distributed
applications that take a long time to execute.

KEYWORDS: Source-code-level instrumentation,
automatic instrumentation, performance database,
performance data collection and entry.

1. INTRODUCTION

Traditionally, to tune algorithm implementations for best
performance, detailed performance data must be gathered
during actual executions of a program on a given target
architecture. Instrumentation is the mechanism used to
gather data from the executing program. Software
instrumentation involves the placement of small pieces of
code in a compiler, a parallel communication library, an
application program, or even the linked executable. The
function of this code, referred to as an event code, is to
report some values to the components responsible for
aggregating the event data. The level at which the
instrumentation is placed determines the types of displays
which can be created. This paper presents the Prophesy
Automatic Instrumentation and Data Entry (PAIDE)
system, for which the goals are minimize instrumentation

overhead and collect enough performance data so as to
generate detailed performance models.
 A way to implement an instrumentation system entails
modifying an application source code before compile-
time to insert calls to collect performance data. The
instrumentation of an application source code can provide
information about abstract high-level events and
constructs within the source code. For example, Pablo
[10] and SvPablo [11] compose an automatic/interactive
instrumentation system. They use a preprocessor
(SvPabloParser) to read the source code in order to
produce an annotated source code with instrumentation
calls. Another approach is to directly instrument the
application source code during the compile time. For
example, CONVEX [5] uses a modified compiler to insert
instrumentation at the desired location. This provides
access to information that is only available to compilers,
such as data and loop dependencies, etc.
 Instrumentation of the parallel communication libraries
provides an easy way to collect data about the interactions
between processes. It can provide trace information
consisting of send and receive events as well as
computation and communication statistics. An advantage
of this approach is that it does not require the
programmers to modify their programs, just re-link them
with special flags. For example, IPS-2 [9] does not
require any modifications of the user's program; its
instrumentation is automatically inserted at compile/link
time. The MPI Standard (Message Passing Interface) [3]
specifies a standard profiling interface that allows tool
developers to easily attach their instrumentation
instructions without the need to have access to the MPI
source code [3, 6]. For PVM (Parallel Virtual Machine)
library [2], the trace data is generated by instrumented
versions of the PVM routines. The instrumented routines,
apart from performing the application message
operations, use PVM to send event tracing messages to a
monitoring process. Another approach is to use binary
rewriting technique to directly insert instrumentation into
the executable image. For example, MTOOL [4] uses the
technique. The binary instrumentation permits data
collected in a language-independent way, and makes it

easy to collect information about the parallel
communication libraries in the same way that application
data is collected. It does not require any source code.
Paradyn [7, 8] uses dynamic instrumentation technique to
modify an executable’s instructions to generate
performance data. It does not require any source code yet.

Figure 1. Prophesy framework

 The Prophesy system [13, 12] is an infrastructure for
analyzing and modeling the performance of parallel and
distributed applications. It targets a number of
programming models, languages and architectures. The
Prophesy system framework consists of three major
components: data collection, data analysis, and three
central databases, as illustrated in Figure 1. The data
collection component focuses on the automatic
instrumentation and application code analysis at the level:
basic blocks, procedures, or functions. The entire code
can be instrumented at the basic block level such that a
significant amount of performance information can be
gathered to gain insight into the performance relationship
between the application and hardware and between the
application, compilers, and run-time systems. The
resultant performance data will be stored in the
performance database organized by basic blocks,
functions, and modules. The data analysis component can
produce an analytical performance model with
coefficients, at the granularity specified by the user. The
models are developed based upon performance data from
the performance database, model templates from the
template database, and system characteristics from the
systems database. An application goes through three
stages (instrumentation of the application, performance
data collection of many runs, and model development

using optimization techniques) to generate an analytical
performance model. Prophesy system allows for the
development of linear as well as nonlinear models. These
models, when combined with data from the system
database, can be used by the prediction engine to predict
the performance on a different compute platform.
 The use of databases with Prophesy system allows
users to explore the performance models developed for
different kernels, applications and systems. The data in
the databases are organized in a hierarchical manner,
allowing for the development of analytical models of
different granularities. Prophesy system is an
infrastructure designed to explore the plausibility and
credibility of various techniques in performance
evaluation (such as scalability, efficiency, speedup,
performance coupling between application kernels, etc.)
and allow users to use various metrics collectively to
bring performance analysis environments to the most
advanced level. The Prophesy interface uses web
technology to enable users from anywhere to access the
performance data, add performance data, or utilize the
automated instrumentation and modeling processes.
 The PAIDE system is the data collection component of
Prophesy system, with the goal of minimizing
instrumentation overhead and code. The PAIDE inserts
minimal instrumentation into the source code to identify
high-level problems such as too much synchronization
blocking and to generate high-level detailed performance
models. The PAIDE system is able to capture information
on repeated as well as single events; information is
collected to generate first and second order statistics on
the various code segments. There is no I/O during the
execution; only one I/O write is completed at the end of
the execution. Tools such as SvPablo [11] etc. that require
I/O during execution result in significant overhead. It was
determined that such tools can result overhead for the
NAS Conjugate Gradient (CG) and Integer Sort (IS)
benchmarks [1] of 30% or more. In contrast, the PAIDE
system resulted in overheads of less than 3.4% for CG
and less than 1% for parallel IS. This is significant and
indicates that the PAIDE does not perturb the
performance data.
 The rest of this paper is organized as follows. Section 2
presents the detailed design framework of the PAIDE
system and its implementation. Section 3 uses NAS CG
and IS benchmarks to do performance analysis and
comparison. Section 4 summaries the paper.

2. FRAMEWORK OF THE PAIDE
SYSTEM

The PAIDE provides a way to do automatic
instrumentation for Fortran77, Fortran90, and C
programs. Its basic organization is illustrated in Figure 2.
The Parser shown in Figure 2 entails inserting some
instrumentation codes to a source file. It provides the
following options:
-ALL: Instrumenting all procedures and outer loops
-PROC: Instrumenting all procedures

-NOP: Instrumenting all procedures not nested in loops
-LOOP: Instrumenting all loops
-FTP: Using anonymous ftp to automatically transfer

some required files to the Prophesy server
 While a source code is instrumented via the Parser, its
performance relation file and call graph file are also
generated. If the Parser with “-FTP” option is used, the
two files are automatically sent to the Prophesy server via
anonymous ftp for entry into the Prophesy database. The
performance relation file is generated according to event
ID order. For each event, the event information includes:
event ID, event start line number, event end line number,
procedure name, caller name, caller file (module name).
The Call graph shows the call graph relations for source
codes. The instrumented source code can be compiled to
generate an instrumented executable. At the end of the
program execution, each process generates a per-process
performance file. The performance files, one for each
processor are automatically sent to the Prophesy server
via anonymously ftp. Then, the corresponding Perl CGI
scripts are used to automatically put the data into
Prophesy database via Prophesy web interface.

Figure 2. Basic organization of the PAIDE system

 To achieve our goal of minimal instrumentation code,
the PAIDE generates statistics in-line for coarse-grain as
well as fine-grain computation. The details of the
instrumentation code are described as follows.

2.1 Performance Data

Basically, parallel computing involves three types:
computation, communication and I/O. For computation,
its metrics of interest may be count and duration.
Communication includes send (source) and receive
(destination) operations. For send (source) operation, its
metrics of interest may be count, start time, duration and
message size. For receive (destination) operations, its
metrics of interest may be duration and message size.
Communication includes the communication between
processors, or between processor and memory etc. For I/O
operation, its metrics of interest may be count, duration
and data size. The PAIDE collects data on all three types.
Further, performance statistics are collected for different
levels of granularities. Since a basic unit can be accessed
from multiple functions, statistics are collected at the
levels of both the function and basic unit. The basic unit
and function statistics are differentiated by access. This is
accomplished by keeping up with the calling routine and
associating a different event identifier with the calling
routine. For example if function C is called by functions
A and B, the execution of function C has two event
identifiers, one for each of the two functions A and B.
 Based on the analysis as above, we insert the following
types of instrumentation codes: counter, timer and square
of each timer. The counter and timer are used to generate
the mean of the execution times. The square of each timer
is used to generate the standard deviation. Generally,
counters count the frequency of an event while timers
measure the time spent using a resource of the system.
Counter and timer instructions can be inserted at
appropriate locations in the application program by the
PAIDE system.
 In Figure 2, when a source code is instrumented via the
Parser, the Parser counts each procedure and loop in the
source code, and labels it with a unique instrumentation
point number (or called event identifier). The basic
PAIDE instrumentation structure is defined as follows:

struct PAIDE {

long count; /* call count */
double runtime; /* duration */

 double psqrtime; /* sum of square of duration */
};
struct PAIDE celero[Total number of instrumentation points];

2.2 Automatic Instrumentation

The PAIDE provides multiple instrumentation options
described as above so that the user can choose to
instrument only procedures or loops, the procedures not
nested in loops and outer loops, or all procedures and
outer loops. The user also can select the source files to be
instrumented. But the main file containing the “main()”
function for a C program or the “PROGRAM” subroutine
for a Fortran program must be instrumented. The default
instrumentation option is to instrument all procedures and
all loops for all source files.

Source code

Parser

Instrumented source code

Compiler

Instrumented executable

Performance files

Prophesy Database

Performance
relations

Call
Graph

 The PAIDE takes a source code to generate the
corresponding instrumented file. If the source code
contains the main routine, it renames the C main function
to “_Prophesy_main_()”, or changes the Fortran main
routine PROGRAM to SUBROUTINE. It also generates
an extra initial main file “XX_init.c” containing a new
“main()”. In the instrumented Fortran code, the original
main routine like “PROGRAM NAME” is substituted
with “SUBROUTINE NAME” and “XX_init.c” contains
a call to NAME_ or NAME (based on different C/Fortran
call interfaces). Note that, in Fortran90, the module/array
has the same syntax as function calls like YY(…). If
instrumenting the function calls is allowed, the PAIDE
will automatically instrument all the function calls plus
the data structures with form of YY(…). If the program is
large, and has a lot of modules, there will be a lot of code
unnecessarily instrumented. Therefore, for Fotran77 and
Fortran90 programs, the PAIDE only instrument
subroutines. In the instrumented C code, the original main
function “main()” is replaced with “_Prophesy_main_()”,
and “XX_init.c” contains a call to “_Prophesy_main_()”.
 For example, given NAS Parallel IS benchmark “is.c”,
after it is instrumented, the following files are generated:
the initial main file “is_init.c”, the instrumented source
code “is_inst.c”, the performance relation file
“eventlist.is”, and the call graph file “callgraph.is”. An
example of the in-line instrumentation code is given
below:

/* This is the main iteration of is.c */
#line 952 "Instrumentation code"
prophesytime = gettimeofday(&begin_time[62], (void *)0);
#line 952 "is.c"
for(iteration=1; iteration<=10; iteration++)

 {
 if(my_rank == 0 && 'A' != 'S')
#line 954 "Instrumentation code"
(prophesytime = gettimeofday(&begin_time[60], (void *)0),
_printf_ReturnValue_ =
#line 954 "is.c"

printf(" %d\n", iteration)

#line 954 "Instrumentation code"
, prophesytime = gettimeofday(&exit_time, (void *)0),
prophesyruntime = exit_time.tv_sec - begin_time[60].tv_sec,
prophesyruntime += ((double)(exit_time.tv_usec -
begin_time[60].tv_usec) / 1000
000.0),
celero[60].runtime += prophesyruntime,
celero[60].psqrtime += prophesyruntime * prophesyruntime,
celero[60].count ++
, _printf_ReturnValue_)
#line 954 "is.c"
;

#line 955 "Instrumentation code"
(prophesytime = gettimeofday(&begin_time[61], (void *)0),
#line 955 "is.c"

rank(iteration)
#line 955 "Instrumentation code"
, prophesytime = gettimeofday(&exit_time, (void *)0),

prophesyruntime = exit_time.tv_sec - begin_time[61].tv_sec,
prophesyruntime += ((double)(exit_time.tv_usec -
begin_time[61].tv_usec) / 1000
000.0),
celero[61].runtime += prophesyruntime,
celero[61].psqrtime += prophesyruntime * prophesyruntime,
celero[61].count ++
)
#line 955 "is.c"
;
 }
#line 956 "Instrumentation code"

prophesytime = gettimeofday(&exit_time, (void *)0);
prophesyruntime = exit_time.tv_sec - begin_time[62].tv_sec;
prophesyruntime += ((double)(exit_time.tv_usec -
begin_time[62].tv_usec) / 1000
000.0);
celero[62].runtime += prophesyruntime;
celero[62].psqrtime += prophesyruntime * prophesyruntime;
celero[62].count ++;

#line 956 "is.c"

 This instrumentation is for all procedures and the outer
loop to illustrate the instrumentation statement added to
an application source code. For the main for-loop, its
eventID is 62. Its instrumentation initializes the timer to
measure the loop duration. At the end of the outer loop, it
computes the duration of the loop and increments its
timer, square of timer, and counter. For the function
rank(), its eventID is 61. Its instrumentation code is
similar to that for the outer loop as above.

3. CASE STUDIES: PERFORMANCE
ANALYSIS AND COMPARISON

In this section, we use NAS CG and IS benchmarks to test
the PAIDE system. For the serial CG benchmarks, we
analyze the instrumentation overheads for two cases, Case
I and Case II. Case I consists of instrumentation for
procedures and outer loops and Case II consists of
instrumentation for all procedures (that include the
procedures in loops.) and outer loops. We analyze the
two cases for different problem sizes and different
number of processors. The following experimental results
are obtained from SGI origin 2000. The SGI Origin2000
is in the Center for Parallel and Distributed Computing at
Northwestern University. It is an eight-way symmetric
multiprocessor. Each processor is a 64-bit chip running at
195 MHz capable of 390 Mflops (2 flops per cycle). The
total main memory is 1GB.

3.1 NAS CG Benchmarks (Fortran version)

The NAS CG Benchmark [1] is an iterative algorithm for
solving a linear system of equations, for which the linear
system is represented as a sparse matrix. Table 1 shows
the matrix orders and the number of iterations for problem
size S, W, A and B.

Table 1. Number of iterations and serial execution times
for problem size S, W, A and B

Problem size Class S Class W Class
A

Class B

Matrix order 1400 7000 14000 75000
No. Iterations 15 15 15 75
Original 0.86 10.89 47.41 2529.41
Case I 0.87 11.18 47.96 2538.53
Case II 0.88 11.27 48.04 2581.70

3.1.1 Serial NAS CG benchmark

With increasing the problem size from S to B, Table 1
shows the execution times of the original CG program,
the instrumented program in Cases I and II for different
problem sizes. Case I involves 33 instrumentation events,
and Case II involves 39 instrumentation events. Table 2
shows the percent of the instrumentation overhead with
increasing the problem size. The results indicate that the
overhead is less than 3.4% in all cases. Further, for the
large problem size with a large number of iterations,
indicating a large number of times the PAIDE
instrumentation code is executed, the overhead is less
than 3%.

Table 2. Percent of Instrumentation overhead
perturbation for serial CG

Problem size Class S Class W Class A Class B
Case I 1.15% 2.59% 1.15% 0.36%
Case II 2.27% 3.37% 1.31% 2.03%

3.1.2 Parallel NAS CG Benchmark with Class A

For the parallel CG benchmark with Class A for the
problem size, Case I involves 48 instrumentation events,
and Case II involves 82 instrumentation events. Figure 3
shows the execution times of the original CG program
and the two cases with increasing number of processors
from one to eight processors. The corresponding
percentages are given in Table 3. The results also
illustrate the overhead to be less than 3.4%, which is
consistent with the sequential case.

Table 3. Percent of Instrumentation overhead for parallel

CG with Class A

Processors 1 2 4 8
Case I 1.15% 1.27% 2.01% 1.91%
Case II 1.31% 2.14% 3.22% 3.15%

Table 4. Percent of instrumentation overhead perturbation

for parallel IS with Class B

Processors 1 2 4 8
Case I 4.90% 0.43% 0.43% 0.22%
Case II 5.45% 0.44% 0.68% 0.81%

3.2 NAS Parallel IS Benchmarks (C version)

The IS benchmark [1] is parallel sort over small integers.
It sorts N keys in parallel. The keys are generated by the
sequential key generation algorithm and initially must be
uniformly distributed in memory. Notice that the initial
distribution of the keys can have a great impact on the
performance of the benchmark.
 For the parallel IS benchmark with Class B, it sorts 225
keys in parallel. Case I involves 45 instrumentation
events, and Case II involves 52 instrumentation events.
Figure 4 shows the execution times of the original
program, the instrumented program for the two cases with
different number of processors. Table 4 shows the percent
of the instrumentation overhead with increasing the
number of processors. Again the percents are low and
highly dependent on the initial distribution of memory.

0

10

20

30

40

50

60

0 2 4 6 8 10

Number of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

)

Original

Case I

Case II

Figure 3. Execution times for parallel CG with Class A

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10

Number of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

)

Original

Case I

Case II

Figure 4. Execution times for parallel IS with Class B

 In Table 3 and 4, the percent of the instrumentation
overhead for each parallel execution is less than 3.4%.
Especially, for the parallel IS benchmark with the large
problem size Class B, the percent of the instrumentation
overhead is less than 1%. The two case studies show that
we basically meet the goal of the PAIDE: the minimal
instrumentation overhead and code, and minimal
perturbation of application programs. The PAIDE system
is practical and more appropriate for parallel and
distributed applications.

4. SUMMARY

In this paper, we present the design and implementation
of the PAIDE system, for which the goal is to minimize
instrumentation overhead or perturbation. The PAIDE
automatically instruments application by inserting code to
generate in-line first and second order statistics about the
code segment. No I/O operations occur during the
execution of the application; the PAIDE requires only one
I/O write operation that occurs at the end of execution of
each process. In addition to instrumenting the application,
the PAIDE generates an events file (that maps the event
identifiers with the lines of code in the application) and a
control flow file. Further, unique identifiers are used to
distinguish performance statistics for functions or routines
that call similar code segments. The performance data can
be used to generate models and aid with identifying
bottlenecks and developing more efficient codes.
 The experimental results using the PAIDE system with
two of the NAS Parallel Benchmarks indicates that the
PAIDE achieves its original goal of minimal overhead. In
particular, the overhead for the PAIDE was less than
3.4% for CG and less than 1% for parallel IS. This is
significant and it indicates that the PAIDE does not
perturb the performance data, and is appropriate for
parallel and distributed applications that take a long time
to execute. Some works for the PAIDE system will be
further done, such as the support for C++ and HPF
programs, etc.

ACKNOWLEDGEMENTS

This research work was supported in part by the National
Science Foundation under NSF grant EIA-9974960 and a
NASA grant.

REFERENCES

[1] D. Bailey, T. Harris, et al., The NAS Parallel

Benchmarks, Tech. Report NAS-95-020, Dec. 1995.
See also http://science.nas. nasa.gov/Software/NPB/.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek and V. Sunderam, PVM: Parallel Virtual
Machine – A Users’ Guide and Tutorial for
Networked Parallel Computing, the MIT Press, 1994.

[3] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-
Passing Interface, the MIT Press, 1994.

[4] A. Goldberg and J. Hennessy, Performance debugging
shared-memory multiprocessor programs with
MTOOL, in Proc. of Supercomputing'91.

[5] G. Hansen, C. Linthicum, and G. Brooks, Experience
with a performance analyzer for multithreaded
application, in Proc. of supercomputing'90.

[6] E. Karrels and E. Lusk, Performance Analysis of MPI
programs, available from the URL:
ftp://info.mcs.anl.gov/pub/mpi/misc/heath.ps.

[7] B. Miller, J. Cargille, et al., The Paradyn Parallel
Performance Measurement Tools,
http://www.cs.wisc.edu/~paradyn/papers.html.

[8] B. Miller, D. Callaghan, et al., The Paradyn parallel
performance measurement tools, IEEE Computer,
28(11), 1995.

[9] B. Miller, M. Clark, et al., IPS-2: The second
generation of a parallel program measurement system,
IEEE Transactions on Parallel and Distributed
Systems, Vol. 1, No. 2, 1990, 206-217.

[10] D. Reed, R. Olson, et al., Scalable performance
environments for parallel systems, in Proc. of the 6th
Distributed Memory Computing Conference, IEEE
Computer Society Press, 1991, 562-569.

[11] L. De Rose, Y. Zhang, M. Pantano, and S. Whitmore,
SvPablo Guide, Pablo Research Group, April 2000.

[12] V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, R.
Stevens, M. Hereld, and I. Judson, Prophesy: An
infrastructure for analyzing and modeling the
performance of parallel and distributed applications,
in Proc. Of the 9th IEEE International Symposium on
High Performance Distributed Computing (short
paper), IEEE Computer Society Press, August 2000.

[13] X. Wu, V. Taylor, J. Geisler, X. Li, Z. Lan, R.
Stevens, M. Hereld, and I. Judson, Design and
development of Prophesy performance database for
distributed scientific applications, in Proc. 10th SIAM
Conference on Parallel Processing for Scientific
Computing, March 2001.

